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ON OPTIMAL CONTROL OF A BROWNIAN MOTION

by
Yu-Chung Liao
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Gensider a controlled diffusion process which evolves as a reflected
Brownian motion under each control action. A switching cost is incurred
when the control action is switched. The control problem turns out to be
a sequential decision problem, i.e., to find a sequence of optimal stopping
times to switch control. The dynamic programming equation for a discounted
cost criterion is a quasi-variational inequality. By allowing the discount
factors tend to zero, we show a new Q.V.I. has a solution that serves as a
potential function to give direction to attain the optimality for a long-run

average cost criterion.

Key words: diffusion, switching cost, quasi-variational inequality,

potential function, long-run average cost.




1.

Introduction

Optimal control of reflected Brownian motion arises naturally from

input-output systems. Faddy [4] models a dam by a Brownian motion with two

reflecting barriers. Puterman [9] uses diffusion processes to model production

and inventory processes. In both cases they assume the existence of a

stationary optimal strategy and start from there. In Rath [10] a Bang-Bang

style strategy is proved to be optimal among stationary strategies by using a

random walk to approximate Brownian motion. Chernoff and Petkau [2] prove

that the optimal conditions are satisfied by certain strategies. All those

papers discuss the case of linear holding costs and two control actions.

Here, we consider a controlled diffusion process which evolves as a

reflected Browniai motion. A switching cost is incurred when the control action

is switched. Since the instants of switches are crucial, the optimal control

problem turns out to be a sequential decision problem. We can write the

dynamic programming equation for a discounted cost criterion by the principle

of dynamic programming in Fleming-Rishel [5]. It is a quasi-variational in-

equality which can be solved by the penalty method in Bensoussan-Lions [1].

By allowing the discount factors tend to zero, a new quasi-variational inequality

arises as the dynamic programming equation for a long-run average cost criterion.

We solve it to prove the existence of a stationary optimal strategy.

2.

¥

Model

Let (2,F,P) be a probability space ¢n which a standard Brownian motion

is defined. {Ft}:=o is the increasing family of complete o-fields generated
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by W.. Let S be the set of F,-stopping times. Let A = {1,2,...M} be
the set of control actions. Under control action i, the controlled process

evolves as the reflected Brownian motion

1) Rf(x+d t+a, W )

where Rf is a function on C[0,®) defined as

RE(W) (t) =Aw(t) - inf{0; w(s), s < t}

for all w € C[0,»). The operating and holding cost is f(x,i) per unit

time if the state of the process is x and action i is used. When switch-

ing from Qction i t6 j a switching cost C{i,j) is incurred. Since
infinitely many switches in a finite time interval will make the total cost

blow uyp, we can, without loss of generality, define a strategy u ='{s(n),u(n)}:=1

to be admissible if

i) s(n) €58 for all n,
ii) 0 < s(n) < s(n+l) for all n
jii) s(n) +«= as n-+ <« w.p.l.,

iv) u(m):8 -+ A is Fs(n)-measurable and u(n) # u{n+l) for all n.

Then given initial state (x,i) and admissible strategy u the control process
is

ii t < s(1),

u(t) = {

u(n) s(n) < t < s(n+l)

and the controlled process is
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t t
Rf(X+Iodu(s)ds+joau(5)d"s)'

We assume the following conditions throughout this paper.

‘ (2) a, #0 1i€A,
(3) di <0 1i€A,
(4) f(-,i):R+ + R* is bounded measurable and nondecreasing 1 € A,
(5) C(i,j) > 0 and C(i,j) + C(§,1) >C(i,1) i #j and j # 1.

Here, (3) is a stability condition. See Kushner [7] and [8].

3. Preliminary Results.

To use variational inequality techniques for solving sequential decision
problems has been studied extensively in [1]. For completeness we briefly dis-
cuss some results in a form which is suited for use in the next section.

Let G be an open subset of R+, w>0, p>1 and D= é&u We

denote the space of all functions f on G such that

L -ux. k
L lle™ecall , <=
k=0 LY (G)

by WP¥G) and WP(G) if u = 0. Since the generalized It6's formula in

[1] holds for the diffusion processes with reflecting boundary in Stroock-

Varadhan [13], the following theorem is proved by the penalty method in [1].
¥a state it without proof.
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Let I, be the indicator function of the set Q, -1l ¢ be the

Ssup-norm in L“(G) and

1t =21 a%? _4p i€ A.
2 i i

Theorem 1. Llet G = [0,B], r >0, f€ Lw(G), vE€R and h satisfy

(a) hew""@,
(6) (b) Dh(0) = 0,
(€) v < h(B).

Then the variational inequality

(2) z€WP@G)  1epes,

(b) Liz+rz-f_<_0 a.e. on G,
(¢) Z-h<oO,

(d) (b)x(c) =0,

(e) DZ(0) = O

€¢f) Z(B) = v

™

has a unique solution for any fixed i € A. In addition we have

(8 Nzl g < Ivl + 201£l g - o)l onlf ¢ + 3 a2 W)l 4
and

SN -1t A -rs -rT
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Here, x(t) 1is the process in (1), and % = inf{t:x(t) = B}.
Corollary 1. Given h € Wl’"(G) and satisfy

there is a constant ¢ and a sequence hn such
(10) that hn satisfies (6), Dzhn < ¢ forall n

and h_+h as ns= in WOU(G).
Then Theorem 1 holds. In this case, ||(D2h)+|h in (8) is replaced by

C' = Max{0,c}.

Proof, Let Zn be the solution of (7) with respect to hn' By (8) there is
a subsequence of n, still denoted by n, such that Zn + Z weakly in
HZ’P(G) and strongly in Wl’p(G). Hence Z satisfies (7), (8) and (9).

We have the same conclusions as in Corollary 1 when the Neumann boundary

condition (7e) is replaced by the Dirichlet boundary condition.

Corollary 2. let G = [BI’BZ] and B1 > 0. Then Corollary 1 is true if (7e)

and (7f) are replaced by
(e") Z(Bi) = vy and vy f_h(Bi) i=1,2,

In case r|v,| < |[f||; for i=1,2 then |v| in (8) can be removed,

i 1.2
an iL"zfl < 2liell; - a,l|on]g + za5C"-

Another result from Robin [11] is

Theorem 2. Given f € L"(R*), r > 0, h bounded continuous on R'. Let x(t)

ARG
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be the process in (1) and

S
(12) Z(x) = inf E {J e Tte(x(t))dt + e'rsh(x(s))}.
ses *Uo

Then Z _is bounded continuous on R*, Z<h and

T

Z(x) = Exj e TtE(x())dt + e TTh(x(1))

o

where

T = inf{t:2(x(t)) = h(x(t))}.

The next lemma gives useful estimates.

Lemma 1. If both f and h in Theorem 2 are nondecreasing and non-negative

then so is 2Z.
Proof. Given x > y then

Rf(x+dit+aiwt) 3_Rf(y+dit+aiwt) w.p.l.
By (12), it is clear that Z(x) > Z(y) > 0.

Following the assumptions of Lemma 1 we have

0<2(x) - 2(y) < E {Fe'”f(x(t))dt . e""zch} - 2y
- = "xlJ,

T = inf{t:x(t) = y)}.

SPRE N
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By Karlin-Taylor [6],

Ex-r = - ali-(x-y).

Hence
0 <200 - 200 < - 3 (x-N) A1
1
and
(13) 0 <0z(x) < - -1l €],
i R
Let
vg(x,i) = exJ:e‘"f(x(t),i)dt
and
T ooy . S _rt . -rs, T
Vn(x.1) = :g Ex{foe £f(x(t),i)dt + e sMiVm_l(x(s))} m>1
where
MVI(x) = min C(i,j) + VI(x,j) m> 1.
j#i

By induction and Lemma 1, V;(x,i) is non-decreasing and non-negative for all

i and m. Hence

1
(14) : 0 < VE(x,i) < - a—;"f(x.i) |k‘.

Now MVI(x) 1s satisfied by (10) when V:(x,j) € W'"(*) for all j € A.
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By induction, we can choose boundary condition v = V;(B) and use Corollary
1 to show locally, hence globally, that
(@) Vi(x,i) € W R i€A and m> 0,

T, . T .
(b) Vm(x,1) - Mivm-l(x) <0 1€A and m> 1,

(15) () L'WVi(x,i) + 1V (x,i) - £(x,i) <0 a.e.on R° i€A and m> 0,

(d) (b)x(c) = O,

(e) van(o,i) =0 i€EA.

Here (a) comes from (11) and (14) because the upper bound in (11} is actually

independent of G. Let

Vi(x,i) = inf E} i{re-rtf(x(t),u(t))dt + ¥ e‘rs(“)C(u(n-l),u(n))}
u€y Yo n=1

where U is the set of all admissible strategies and C(u(0), u(l)) = C(i,u(l1)).

Theorem 3. Vr(x,i) is the unique solution of the following quasi-variational

inequality

(8) V(x,i) € W"R) ie€a,

®) LW (x,1) ¢ IV (x,i) - £(x,i) <0 a.e. i€A

(16) (¢) Vi(x,i) - MV'(x) <0 1iE€A, ;
(d) (b)x(c) = 0,
(e) DV(0,i) =0 i€ A. é




Also Vr(x,i) is non-decreasing for all i and there is a constant K

independent of r such that

a7 IoVieL D , <K
R
E and
‘ 2. T X .
: (18) 1DV (x,1) || ., <K for all i € A.
. R
4

Proof. The same as in Evans-Freidman [3]: V;(x,i) is the optimal cost

function to control the process with no more than m switches,

T . . .
. (19) [xv (x,1) IIR* <l1£tx,1) IIR+ i €A
and
(20) ﬁu@)+fug) as mow

uniformly on R+. Now all we need is to estimate DZV;(y,i) for any y € R+,

i€A and m> 2, If

s r
Vi(i) < MV ),

then there is a neighborhood G of y such that

(21) L'VI(x,i) + 1V (x,i) - £(x,i) = 0 a.e. on G.

By (13) and (19), we have

2,0, . -2
(22) ||p Vm(x,1)||s < 6ai ||f(x,i)||R‘.

s
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In case
Vi(y,i) = MVD (),
there is a set A' < A such that i ¢ A',
Vily,i) = C(,3) + Vo 1 (n,3)  § €A
and
VI(r,i) < C(i,§) + Vg 1(v,j)  J €A' and ifj.

By (5), we have

r . r . '
Vi1 (753) < Mij_z(y) j EA'.

So there is a neighborhood G of y on which V:_l(x,j) satisfies (21),

hence (22), for all j € A'. Thus,

st -

(23) V;(x,i) = inf EX{I e TtE(x(t))dt + e rS;{t>s}h(x(s))
s€S 0
+{mh@ﬂMﬂm}mG
where
h(x) = min C(3,§) + VE_;(x,i) on G

JEA'

and

v = inf{t:x(t) € 3G and x(t) > 0}.

By Corollary 2, (11) and (22), we have

2, SMTT e

T TR
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(1.24) LV (x,D)]g < 6 ||f(x,i)||R+ .

From (14), (22) and (24) there is a constant K independent of r and m

such that
lovg ()l , <K
R
and

2, . .
||p Vm(x,1)"R* < K.
So the theorem is proved by allowing m + «» in (1S5).

4. Minimum Average Cost Problem.

The total cost to control the process by strategy u up to time T

with initial state (x,i) is

T ®
. _Lu
J(u,x,1,T) = Ex’iIof(x(t),u(t))dt + nle{s(n)ﬂ,}(ﬁ(u(n-l),u(n)).

The long run average cost is

(25) 8(u,x,i) = lim inf ﬂ‘-‘-ﬁ‘-}r—‘-ﬁl )

T-pco

The related dynamic programming equation to minimize 0(u,x,i) is solved as
Theorem 4. Theorem 5 is a verification theorem that shows that there is u
stationary optimal strategy such that the minimum average cost can be attained

as a real limit in (25).
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By (19) and (20), there are j € A, 6 € R and a subsequence of r,

still denoted by r, such that
vi0,j) <v7(0,i) ie€A

and

rVr(o,j) +8 as 1T+ 0.
By Theorem 3, we have
0 < (x,i) = Vi(x,i) - Vv©(0,j)
< CELH) + Vi(x,3) - V(0,)
< C(i,j) + Kx.
Since Vr(x,i) has the same derivatives as Vr(x.i) has, we have

(8 V(x.i) € ¥R i€ A,

) LV(x,i) + tV(x,0) - £(x,1) <0 a.e.on R' i€ A,
k (26) (&) V(x,i) -MV(x) <0 €A,

d) (@)x) =0,

(&) DV'(0,i) =0 i€A.

By (17), there is a function V(x,i) and a subsequence of r, still denoted

by r, such that

8 ' Vix,1) + V(x,1i)

R S

rVr(x,i) + 6

uniformly on compact subsets of R* as r+0 forall i.
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| Theorem 4. V(x,i) satisfies

{ (@) V(x,i) e WWPPRY) p>1, >0,

(b) L'V(x,i) + 0 - £(x,i) <0 a.e. on R* i gA,

A T 2 PR R DR

(6) V(x,i) - MV(x) < 0,

@ ®)x() = o,

(&) DV(0,i) =0 ie€A !

and é

(27 0 < V(x,i) < C(i,j) + Kx. §

E Proof. Let r + 0 in (26). {

Let g be a twice continuous differentiable function on R* such that

g(x) >0 on R,

Dg(0) = 0,
X

g(x) = e x>B

g(x) + |pg(x)| + |p%g(x)| <K' x <B

for some constants B and K'.
Lemma 1.2, For any u,x and i, E: ix('l‘) is a bounded function of T.
»

Proof. By (3), there isan a > 0 and g < 0 such tha

%ﬂ:uz + diu <g 1€A.

let us= {s(n),u(n)};:“1 with s(m) = » for some =m > 0. By Stroock-

Varadhan {21},
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h(T) = Ey ;8(x(T))
m (TAs(n)
= g(x) + E .{nz [ g (x(t))at
%302 s ne1) 8 }

T

g(x) + E} f LB g x(e))at
0

is finite for all T. So

an(r) = Y ; - L Mgxm

a2 ax(T)

u 1 2
= Ex,i{l{x(TPB}(f u(m® +d

u(T)u)e
* L my<B)” Lu(T)g(x(t))}.
Hence Dh(T) < 0 if
1

h(T) > K" > K' - %-x'( Fed) 1€A

for some constant K". Thus
h(T) <K' + g(x) T20.

For any admissible strategy u, we have

u u

Ex,ig(x(T)) = llri;: Ex’il{s(.)g}l(xﬂ))

K"+ g(x).

This proves the lemma.
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Let u* = {s(n),u(n)}“;‘p1 be defined by

s(l) = inf{t>0:V(x(t),i) = MiV(x(t))},

u(l) = min{j € A:V(x(s(1)),i) = C(i,j) + V(x(s(1)),j)}
and
s(n) = inf{t>s(n-1):V(x(t),u(n-1)) = Mu(n_nV(x(t))},
u(n) = min{j € A:V(x(s(n)),u(n-1)) = C(u(n-1),j) + V(x(s(n)),j))
|
for n> 1.

Theorem 5. 6(u*,x,i) = 0 < 6(u,x,i) for any admissible strategy u.

Proof. By Theorem 4,

B} {V(x(T),u(T) - V(x,))

27 = E::i XI{V(x(T s(n)),u(Ms(n)) - V(x(Ms(n-1)),u(TAs(n-1)))}
n=
s (n)

= u* s u(“'l) -
By.i BZI{IW(“_I)L Vix(t),uln-1))dt - I, ) pyCluln 1),u(n))}.

vhere u(TAs(0)) = i. Hence

sV, 0-EY V(x(D),u(M))
Ju*,x,1,T 1
(28) 8 = _-L—.ITI_LJ. - X E
and then
(29) 6 = o(u*,x,1)

by Lemms 2. To prove o < Q(u,x.i) for any u, we simply have inequality at
(27), (28) and (29). | |

r fRemark . u* is a stationary strategy.
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